專注電子技術(shù)學習與研究
當前位置:單片機教程網(wǎng) >> MCU設(shè)計實例 >> 瀏覽文章

從信號分析的運用中回眸傅里葉算法

作者:佚名   來源:本站原創(chuàng)   點擊數(shù):  更新時間:2012年06月21日   【字體:

    干了兩個月的振動信號分析之后,對數(shù)字信號處理過程中用到的傅里葉變換有了一個重新的認識,作為對傅里葉算法的總結(jié)。

    

    傅立葉變換是數(shù)字信號處理領(lǐng)域一種很重要的算法。但是該算法到底有何意義呢?

    要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續(xù)測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據(jù)該原理創(chuàng)立的傅立葉變換算法利用直接測量到的原始信號,以累加方式來計算該信號中不同正弦波信號的頻率、振幅和相位。

    和傅立葉變換算法對應的是反傅立葉變換算法。該反變換從本質(zhì)上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉(zhuǎn)換成一個信號。

    因此,可以說,傅立葉變換將原來難以處理的時域信號轉(zhuǎn)換成了易于分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最后還可以利用傅立葉反變換將這些頻域信號轉(zhuǎn)換成時域信號。

    從現(xiàn)代數(shù)學的眼光來看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數(shù)表示成正弦基函數(shù)的線性組合或者積分。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。

    傅立葉變換屬于調(diào)和分析的內(nèi)容。"分析"二字,可以解釋為深入的研究。從字面上來看,"分析"二字,實際就是"條分縷析"而已。它通過對函數(shù)的"條分縷析"來達到對復雜函數(shù)的深入理解和研究。從哲學上看,"分析主義"和"還原主義",就是要通過對事物內(nèi)部適當?shù)姆治鲞_到增進對其本質(zhì)理解的目的。比如近代原子論試圖把世界上所有物質(zhì)的本源分析為原子,而原子不過數(shù)百種而已,相對物質(zhì)世界的無限豐富,這種分析和分類無疑為認識事物的各種性質(zhì)提供了很好的手段。

    在數(shù)學領(lǐng)域,也是這樣,盡管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征。"任意"的函數(shù)通過一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對簡單的函數(shù)類,這一想法跟化學上的原子論想法何其相似!奇妙的是,現(xiàn)代數(shù)學發(fā)現(xiàn)傅立葉變換具有非常好的性質(zhì),使得它如此的好用和有用,讓人不得不感嘆造物的神奇:

    1. 傅立葉變換是線性算子,若賦予適當?shù)姆稊?shù),它還是酉算子;

    2. 傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;

    3. 正弦基函數(shù)是微分運算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解.在線性時不變的物理系統(tǒng)內(nèi),頻率是個不變的性質(zhì),從而系統(tǒng)對于復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;

    4. 著名的卷積定理指出:傅立葉變換可以化復雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;

    5. 離散形式的傅立葉變換可以利用數(shù)字計算機快速的算出(其算法稱為快速傅立葉變換算法(FFT))。

    正是由于上述的良好性質(zhì),傅里葉變換在物理學、數(shù)論、組合數(shù)學、信號處理、概率、統(tǒng)計、密碼學、聲學、光學等領(lǐng)域都有著廣泛的應用。
 

關(guān)閉窗口

相關(guān)文章